388 research outputs found

    Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices

    Get PDF
    We present a finite-element solution method that is well suited for interactive simulations of cutting meshes in the regime of linear elastic models. Our approach features fast updates to the solution of the stiffness system of equations to account for real-time changes in mesh connectivity and boundary conditions. Updates are accomplished by augmenting the stiffness matrix to keep it consistent with changes to the underlying model, without refactoring the matrix at each step of cutting. The initial stiffness matrix and its Cholesky factors are used to implicitly form and solve a Schur complement system using an iterative solver. As changes accumulate over many simulation timesteps, the augmented solution method slows down due to the size of the augmented matrix. However, by periodically refactoring the stiffness matrix in a concurrent background process, fresh Cholesky factors that incorporate recent model changes can replace the initial factors. This controls the size of the augmented matrices and provides a way to maintain a fast solution rate as the number of changes to a model grows. We exploit sparsity in the stiffness matrix, the right-hand-side vectors and the solution vectors to compute the solutions fast, and show that the time complexity of the update steps is bounded linearly by the size of the Cholesky factor of the initial matrix. Our complexity analysis and experimental results demonstrate that this approach scales well with problem size. Results for cutting and deformation of 3D linear elastic models are reported for meshes representing the brain, eye, and model problems with element counts up to 167,000; these show the potential of this method for real-time interactivity. An application to limbal incisions for surgical correction of astigmatism, for which linear elastic models and small deformations are sufficient, is included

    The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats.</p> <p>Results</p> <p>Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (<it>P </it>< 0.001 <it>vs </it>the weight-bearing control). The number of quiescent (M-cadherin<sup>+</sup>), proliferating (BrdU<sup>+ </sup>and myoD<sup>+</sup>), and differentiated (myogenin<sup>+</sup>) satellite cells was also reduced by 48-57% compared to the weight-bearing animals (<it>P </it>< 0.01 for all). Daily application of electrical stimulation (2 × 3 h at a 20 Hz frequency) partially attenuated the reduction of the fiber cross-sectional area, satellite cell activity, and myonuclear domain (<it>P </it>< 0.05 for all). Extensor digitorum longus muscles were not significantly altered by hindlimb unloading.</p> <p>Conclusion</p> <p>This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.</p

    DCE-MRI for pre-treatment prediction and post-treatment assessment of treatment response in sites of squamous cell carcinoma in the head and neck

    Get PDF
    Background and Purpose It is important to identify patients with head and neck squamous cell carcinoma (SCC) who fail to respond to chemoradiotherapy so that they can undergo post-treatment salvage surgery while the disease is still operable. This study aimed to determine the diagnostic performance of dynamic contrast enhanced (DCE)-MRI using a pharmacokinetic model for pre-treatment predictive imaging, as well as post-treatment diagnosis, of residual SCC at primary and nodal sites in the head and neck. Material and Methods Forty-nine patients with 83 SCC sites (primary and/or nodal) underwent pre-treatment DCEMRI, and 43 patients underwent post-treatment DCE-MRI, of which 33 SCC sites had a residual mass amenable to analysis. Pre-treatment, post-treatment and %change in the mean Ktrans, kep, ve and AUGC were obtained from SCC sites. Logistic regression was used to correlate DCE parameters at each SCC site with treatment response at the same site, based on clinical outcome at that site at a minimum of two years. Results None of the pre-treatment DCE-MRI parameters showed significant correlations with SCC site failure (SF) (29/83 sites) or site control (SC) (54/83 sites). Post-treatment residual masses with SF (14/33) had significantly higher kep (p = 0.05), higher AUGC (p = 0.02), and lower % reduction in AUGC (p = 0.02), than residual masses with SC (19/33), with the% change in AUGC remaining significant on multivariate analysis. Conclusion Pre-treatment DCE-MRI did not predict which SCC sites would fail treatment, but post-treatment DCE-MRI showed potential for identifying residual masses that had failed treatment

    DCE-MRI for pre-treatment prediction and post-treatment assessment of treatment response in sites of squamous cell carcinoma in the head and neck

    Get PDF
    Background and Purpose It is important to identify patients with head and neck squamous cell carcinoma (SCC) who fail to respond to chemoradiotherapy so that they can undergo post-treatment salvage surgery while the disease is still operable. This study aimed to determine the diagnostic performance of dynamic contrast enhanced (DCE)-MRI using a pharmacokinetic model for pre-treatment predictive imaging, as well as post-treatment diagnosis, of residual SCC at primary and nodal sites in the head and neck. Material and Methods Forty-nine patients with 83 SCC sites (primary and/or nodal) underwent pre-treatment DCEMRI, and 43 patients underwent post-treatment DCE-MRI, of which 33 SCC sites had a residual mass amenable to analysis. Pre-treatment, post-treatment and %change in the mean Ktrans, kep, ve and AUGC were obtained from SCC sites. Logistic regression was used to correlate DCE parameters at each SCC site with treatment response at the same site, based on clinical outcome at that site at a minimum of two years. Results None of the pre-treatment DCE-MRI parameters showed significant correlations with SCC site failure (SF) (29/83 sites) or site control (SC) (54/83 sites). Post-treatment residual masses with SF (14/33) had significantly higher kep (p = 0.05), higher AUGC (p = 0.02), and lower % reduction in AUGC (p = 0.02), than residual masses with SC (19/33), with the% change in AUGC remaining significant on multivariate analysis. Conclusion Pre-treatment DCE-MRI did not predict which SCC sites would fail treatment, but post-treatment DCE-MRI showed potential for identifying residual masses that had failed treatment

    Novel Prostate-Specific Promoter Derived from PSA and PSMA Enhancers

    Get PDF
    The expression of prostate-specific membrane antigen (PSMA) and prostate-specific antigen (PSA), two well characterized marker proteins, remains highly active in the hormone refractory stage of prostate cancer. In this study, an artificial chimeric enhancer (PSES) composed of two modified regulatory elements controlling the expression of PSA and PSMA genes was tested for its promoter activity and tissue specificity using the reporter system. As a result, this novel PSES promoter remained silent in PSA- and PSMA-negative prostate and non-prostate cancer cell lines, but mediated high levels of luciferase in PSA- and PSMA-expressing prostate cancer cell lines in the presence and absence of androgen. To determine whether PSES could be used for in vivo gene therapy of prostate cancer, a recombinant adenovirus, Ad-PSES-luc, was constructed. Luciferase activity in prostate cancer cell lines mediated by Ad-PSES-luc was 400- to 1000-fold higher than in several other non-prostate cell lines, suggesting the high tissue-specificity of the PSES promoter in an adenoviral vector. Finally, recombinant virus Ad-PSES-luc was injected into mice to evaluate the tissue-discriminatory promoter activity in an experimental animal. Unlike Ad-CMV-luc, the luciferase activity from systemic injection of Ad-PSES-luc was fairly low in all major organs. However, when injected into prostate, Ad-PSES-luc drove high luciferase activity almost exclusively in prostate and not in other tissues. Our results demonstrated the potential use of PSES for the treatment of androgen-independent prostate cancer patients

    Depression is Associated with Moderate-Intensity Physical Activity among College Students during the COVID-19 Pandemic: Differs by Activity level, Gender and Gender-Role

    Get PDF
    Purpose: The novel coronavirus disease (COVID-19) pandemic and associated restrictive measures have implications for depressive symptoms (henceforth depression) of young people and risk may be associated with their reduced physical activity (PA) level. Therefore, we aimed to examine the association between depressive symptoms and PA among college students with different gender and gender role (masculinity traits and femininity traits) during the COVID-19 pandemic. Participants and Methods: Cross-sectional study included 628 healthy college students from nineteen different locations. The Center for Epidemiological Studies Depression Scales (CES-D), the International Physical Activity Questionnaire - Short Form (IPAQ-SF), and the 50-item Chinese Sex-Role Inventory (CSRI-50) were used to measure depressive symptoms, PA continuous (weekly metabolic equivalent minutes, MET-minutes/week) and categorical indicators (activity level category) and gender role, respectively. The statistical analyses were used in partial correlation analysis, t-test, one-way ANOVA, moderation model tests, and linear regression model tests. Results: Total of 34.72% participants had clinically relevant depression (16, CES-D scale). Total of 58.6% participants were classified as a “low” activity level for spending less time on PA. Depression significantly negatively correlated with MET-minutes/week in moderate-intensity PA but not vigorous and walking scores. Of note, the depression-PA association was only moderated by the “low” activity level group in terms of categorical scores across gender groups. Participants with higher masculinity traits were less likely to have depression among all participants. Moreover, more recovered cases and fewer deaths could also predict the lower depression risk in the “high” activity level group. Conclusion: Moderate-intensity PA is beneficial for reducing depression risk among college students at a low activity level. College students with fewer masculinity traits (regardless of gender) are highly vulnerable to depression during the outbreak of COVID-19. Effective control of the COVID-19 pandemic seems critical to alleviating the burden of mental disorders of the public including depression

    Pretreatment carcinoembryonic antigen level is a risk factor for para-aortic lymph node recurrence in addition to squamous cell carcinoma antigen following definitive concurrent chemoradiotherapy for squamous cell carcinoma of the uterine cervix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify pretreatment carcinoembryonic antigen (CEA) levels as a risk factor for para-aortic lymph node (PALN) recurrence following concurrent chemoradiotherapy (CCRT) for cervical cancer.</p> <p>Methods</p> <p>From March 1995 to January 2008, 188 patients with squamous cell carcinoma (SCC) of the uterine cervix were analyzed retrospectively. No patient received PALN irradiation as the initial treatment. CEA and squamous cell carcinoma antigen (SCC-Ag) were measured before and after radiotherapy. PALN recurrence was detected by computer tomography (CT) scans. We analyzed the actuarial rates of PALN recurrence by using Kaplan-Meier curves. Multivariate analyses were carried out with Cox regression models. We stratified the risk groups based on the hazard ratios (HR).</p> <p>Results</p> <p>Both pretreatment CEA levels ≥ 10 ng/mL and SCC-Ag levels < 10 ng/mL (<it>p </it>< 0.001, HR = 8.838), SCC-Ag levels ≥ 40 ng/mL (<it>p </it>< 0.001, HR = 12.551), and SCC-Ag levels of 10-40 ng/mL (<it>p </it>< 0.001, HR = 4.2464) were significant factors for PALN recurrence. The corresponding 5-year PALN recurrence rates were 51.5%, 84.8%, and 27.5%, respectively. The 5-year PALN recurrence rate for patients with both low (< 10 ng/mL) SCC and CEA was only 9.6%. CEA levels ≥ 10 ng/mL or SCC-Ag levels ≥ 10 ng/mL at PALN recurrence were associated with overall survival after an isolated PALN recurrence. Pretreatment CEA levels ≥ 10 ng/mL were also associated with survival after an isolated PALN recurrence.</p> <p>Conclusions</p> <p>Pretreatment CEA ≥ 10 ng/mL is an additional risk factor of PALN relapse following definitive CCRT for SCC of the uterine cervix in patients with pretreatment SCC-Ag levels < 10 ng/mL. More comprehensive examinations before CCRT and intensive follow-up schedules are suggested for early detection and salvage in patients with SCC-Ag or CEA levels ≥ 10 ng/mL.</p

    Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Get PDF
    The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform
    corecore